
mult-purpose input
K 1 relay 16 A res. @ 250 VAC
larm buzzer
ΠL MODBUS slave port for programming key or for TLLRS -485 (BMS) serial interface hot or cold mode regulation.

installation precautions

俍 SPECIFICATIONS section:
Cot instll the section, places subject to direct sunlight rain, damp, excessive dust mechanical vibrations or shocks
in compliance with safety regulations, the device must be installed properly to ensure adequate protection from contact with electrical parts. All prote
fixed in such a way as to need the aid of a tool to remove them.

2 electrical connection

- ensure that the thermocouple is properly insulated from contact with me
- use already insulated thermocouples.
if necessary, extend the thermocouple cable using a compensating cable to reduce any electromagnetic interference locate the power cables as far away as
possible from the signal cables.

PRECAUTIONS FOR ELECTRICAL CONNECTION
using an electrical or pneumatic screwdriver, adjust the tightening torque; the device has been moved from a cold to a warm place, humidity may have caused condensation to form inside. Wait about an hour before switching on the power; limits. See the section TECHNICAL SPECIFICAIIONS;
disconnect the power supply before carrying out any type of maintenance;
do not use the device as safety device;
for repairs and for further information, contact the EVCO sales network.
3. FIRST-TIME USE
2. Power up the device as set out in the section ELECTRICAL CONNECTION: an internal
test will start up.
The test normally takes a few seconds; when it is finished the display will switch off. The test normally takes a few seconds; when it is finished the display will switch Recommended configuration parameters for first-time use.

PAR.	DEF.	PARAMETER
SP		

SP	$\mathbf{0 . 0}$	setpoint
PO	$\mathbf{2}$	type of probe

set the parameter
connecting the probe

hen check that the rem
CONFIGURATI ON PARAMETERS
Disconnect the device from the mains.
Make the electrical connections.
without powering up the device.
When connecting to an RS-485 network, connect the EVIF22TSX interface; see relative instruction sheets.

When 30 s have elapsed without the keys
and the keypad will lock automaticall
4.2 Unlocking the keypad

Touch a key for 1s: the display will show the label "UnL
4. 3 Setting the setpoint

Check that the keypad is not locked.

- © SET | Touch the SET key (or take no action for 15s).

4. 4 Silencing the buzzer (if A13 $=1$

5 FUNCTION MODES

搞	N.	PAR.	DEF.	SETPOINT	min... MAX.
	1	SP	0.0	setpoint	r1... r2
0	N.	PAR.	DEF.	ANALOGUE INPUTS	MIN... MAX.
	2	CA1	0.0	regulation probe offset	$-25 . . .25^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	3	P0	2	type of probe	$\begin{aligned} & 0=\text { PTC } \quad 1=\mathrm{NTC} \\ & 2=J \quad 3=\mathrm{K} \\ & 4=\text { Pt } 1003 \text { wires } \\ & 5=\text { Pt } 1002 \text { wires } \\ & 6=\text { Pt } 10003 \text { wires } \\ & 7=\text { Pt } 10002 \text { wires } \\ & 8=4-20 \mathrm{~mA} 9=0.20 \mathrm{~mA} \\ & 10=2-10 \mathrm{~V} \quad 11=0.10 \mathrm{~V} \\ & 12=\text { Ni } 1203 \text { wires } \\ & 13=\text { Ni } 1202 \text { wires } \end{aligned}$
	4	P1	0	enable decimal point ${ }^{\circ} \mathrm{C}$	$0=\text { no } \quad 1=\text { yes }$ if P0 $=2$ or 3 , not effective if $\mathrm{PO}=8 \ldots$ 11, position of decimal point: $0=$ none $1=$ tens digit
	5	P2	0	measurement unit	$\begin{array}{lll} \hline 0={ }^{\circ} \mathrm{C} & 1={ }^{\circ} \mathrm{F} \\ 2=\% & 3=\mathrm{bar} \\ 4=\text { none } & \\ \text { options } 2 \ldots 4 \text { effective only on } \\ \text { LEDs and if PO = } 8 \ldots .11 \end{array}$
	6	P3	0.0	minimum transducer calibration value	-199... 999 points
	7	P4	100	maximum transducer calibration value	-199... 999 points
	8	P5	0	value displayed	$\begin{aligned} & 0=\text { regulation temperature } \\ & 1=\text { setpoint } \end{aligned}$
	9	P8	5	display refresh time	0... 250 s : 10
$\sqrt{4}$	N.	PAR.	DEF.	REGULATION	MIN... MAX.
	10	r0	2.0	setpoint differential	$1 \ldots . .9{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	11	r1	0.0	minimum setpoint	$-199^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} . . . \mathrm{r} 2$
	12	r2	350	maximum setpoint	r1... $999^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	13	r5	0	hot or cold mode regulation regulator	$\begin{array}{\|l} \hline 0=\text { cold mode } \\ 1=\text { hot mode } \\ \hline \end{array}$
	14	r11	0.0	digital input second setpoint	$\begin{array}{\|l\|} \hline-199 . \ldots .999^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F} \\ \text { setpoint }+\mathrm{r} 11 \\ \hline \end{array}$
$[E$	N.	PAR.	DEF.	REGULATOR PROTECTION	MIN... MAX.
	15	C1	0	minimum time between two power-ons of regulator	0... 240 min
	16	C2	0	minimum time off and delay from power-on of regulator	0... 240 min
	17	C3	0	minimum time on regulator	0... 240 s
	18	C4	0	regulator activity regulation probe alarm during 	$0=$ off $\quad 1=0 n$
8	N.	PAR.	EF.	ALARMS	MIN... MAX.
	19	A1	0.0	temperature alarm threshold	-199... $999{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	20	A2	0	temperature alarm type	0 = disabled 1 = absolute minimum 2 = absolute maximum $3=$ minimum relative to $S P$ 4 = maximum relative to $S P$
	21	A3	0	temperature alarm delay	0... 999 min
	22	A7	0	temperature alarm delay after modifying setpoint and power-on	0... 999 min
	23	A8	0	additional alarm signal delay after silencing if the condition persists	0... 999 min
	24	All	2.0	temperature alarm switch off differential	$1 \ldots . .99^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
	25	A13	1	enable alarm buzzer	0 = no $\quad 1=$ yes
5	N.	PAR.	DEF.	DIGITAL INPUTS	MIN... MAX.
	26	${ }^{\text {i }}$	0	multi-purpose input function	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { alarm iA } \\ & 2=\text { alarm iA + regulator off } \\ & 3=\text { switches device on/off } \\ & 4=\text { modifies setpoint } \end{aligned}$
	27	${ }^{16}$	0	multi-purpose input activation	$0=$ with contact closed 1 = with contact open
	28	i7	0	multi-purpose input alarm delay	0... 999 s
V	N.	PAR.	DEF.	SECURITY	MIN... MAX.
	29	POF	1	enable ON/STAND-BY key	$0=$ no $\quad 1=$ yes
	30	PAS	-19	password	-99... 999
Id	N.	PAR.	DEF.	MODBUS	MIN... MAX.
	31	LA	7	MODBUS address	1... 247
	32	Lb	3	MODBUS baud rate	$\begin{aligned} & 0=2,400 \mathrm{baud} \\ & 1=4,80 \mathrm{baud} \\ & 2=9,600 \mathrm{baud} \\ & 3=19,200 \text { baud } \\ & \text { even } \end{aligned}$

ALARMS					
co	description		RESET	TO CORRECT	
Pr1	regulation probe alarm		automatic	- check P0 - check probe integrity - check electrical connection	
AL	temperature alarm		automatic	check A1, A2 and A3	
iA	multi-purpose input alarm		automatic	check i5 and if	
10 TECHNICAL SPECIFICATIONS					
Purpose of the control device				Function controller	
Construction of the control device				Built-in electronic devios	
Container				Black, self-extinguishing	
Category of heat and fire resistance				D	
Measurements					
$75.0 \times 33.0 \times 59.0 \mathrm{~mm}(215 / 16 \times 15 / 16 \times$ $25 / 16$ in) with fixed screw terminal blocks				$75.0 \times 33.0 \times 81.5 \mathrm{~mm}(215 / 16 \times 15 / 16 \times$ $33 / 16$ in) with plug-in screw terminal blocks	
				To be fitted to a panel, snap-in brackets provided	
Degree of protection provided by thecovering				IP65 (front)	
Connection method					
Fixed screw terminal blocks for wires up to $2.5 \mathrm{~mm}^{2}$			Plug-in screw terminal blocks for wires up to $2.5 \mathrm{~mm}^{2}$ (on request)		Pico-Blade connector
Maximum permitted length for connection cables					
Power supply: $10 \mathrm{~m}(32.8 \mathrm{ft})$				Analogue inputs: $10 \mathrm{~m}(32.8 \mathrm{ft})$	
Digital inputs: $10 \mathrm{~m}(32.8 \mathrm{ft})$				Digital outputs: $10 \mathrm{~m}(32.8 \mathrm{ft})$	
Operating temperature				From -5 to $55^{\circ} \mathrm{C}$ (from 23 to $131{ }^{\circ} \mathrm{F}$)	
Storage temperature				From -25 to $70^{\circ} \mathrm{C}$ (from -13 to $158{ }^{\circ} \mathrm{F}$)	
Operating humidity				Relative humidity without condensate from 10to 90%	
Pollution status of the control device				2	
Compliance:					
RoHS 2011/65/EC			WEEE 2012/19/EU		REACH (EC) Regulation 1907/2006
EMC 2014/30/EU					
Power supply:					
$230 \mathrm{VAC}(+10 \%-15 \%)$, $50 / 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$, max. 4 VA in EV3... M7					
$12-24 \mathrm{VAC} / \mathrm{DC}(+10 \%-15 \%)$, $50 / 60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$, max. $5 \mathrm{VA} / 3 \mathrm{~W}$ in EV3... M3					
Earthing methods for the control device				None	
Rated impulse-withstand voltage				4 KV in EV3... M7; 330 V in EV3... M3	
Over-voltage category				III in EV3... M7; I in EV3... M3	
Software class and structure				A	
Analo	gue input			1 for PTC, NTC, Pt 100, Pt 1000 or Ni 120 probes, J or K thermocouples, $0-20 \mathrm{~mA}, 4-20$ $\mathrm{mA}, 0-10 \mathrm{~V}$ or $2-10 \mathrm{~V}$ transducers (regulation probe)	
PTC probes		Measurement field:		from -50 to $150{ }^{\circ} \mathrm{C}$ (from -58 to $302{ }^{\circ} \mathrm{F}$)	
		Resolution:		$0.1{ }^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$	
NTC probes		Measurement field:		from -40 to $110^{\circ} \mathrm{C}$ (from -58 to $230{ }^{\circ} \mathrm{F}$)	
		Resolution:		$0.1{ }^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$	
Pt 100 and Pt 1000 probes		Measurement field:		from -100 to $650{ }^{\circ} \mathrm{C}$ (from -148 to $999{ }^{\circ} \mathrm{F}$)	
		Resolution:		$0.1^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$	
Ni 120 probes		Measurement field:		from -80 to $300^{\circ} \mathrm{C}$ (from -112 to $999{ }^{\circ} \mathrm{F}$)	
		Resolution:		$0.1{ }^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$	
$\begin{aligned} & \hline \mathrm{J} \text { thermo- } \\ & \text { couples } \end{aligned}$		Measurement field:		from 0 to $700^{\circ} \mathrm{C}$ (from 32 to $999{ }^{\circ} \mathrm{F}$)	
		Resolution:		$1^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$	
K thermocouples		Measurement field:		from 0 to $999{ }^{\circ} \mathrm{C}$ (from 32 to $999{ }^{\circ} \mathrm{F}$)	
		Resolution:		$1^{\circ} \mathrm{C}\left(1^{\circ} \mathrm{F}\right)$	
0-20 mA, 4-20 mA, 0-10 V and 2-10 V transducers:				can be configured	
Digital inputs			1 dry contact (multi-purpose), not available if the analogue input is configured for Pt 100, Pt 1000 or NI 1203 wires		
Dry contact			Contact type:		$3.3 \mathrm{~V}, 1 \mathrm{~mA}$
			Protection:		none
Digital outputs			1 with electromechanical relay (K1 relay)		
K1 relay				SPDT, 16 A res. @ 250 VAC	
Type 1 or Type 2 Actions				Type 1	
Additional features of Type 1 or Type 2 actions				c	
Displays				LED display, 3 digit, with function icons	
Alarm buzzer				Built-in	
Communications ports				1 TTL MODBUS slave port for programming key or for serial interface (BMS)	

